RADC-TR-90-347
Final Technical Report

December 1990 AD"'A230 852

TRANSACTION GRAPHS: A SKETCH
FORMALISM FOR ACTIVITY
COORDINATION

Software Options, Inc.

Michael Karr

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Air Development Center
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the RADC Public Affairs Division (PA)
and 1s releasable to the Nutlonal Technical Information Services (NTIS) At
NTIS it will be releasable to the general public, including foreign natiens.

RADC-TR-90-347 has beeh reviewed and is approved for publicatién.

-APPROVED:

DOUGLAS A. WHITE Can_
Project Engineer

APPRQVED: % /

‘RAYMOND. P. UR’I‘Z JR,
Technical Director
Directorate -of Command & Control

FOR THE COMMANDER:

IGOR G. PLONISCH - I
‘Directorate of Plans & Programs

‘ fyour address has changed or if you wish to be removed from the RADC o
;75“‘”“”“”mailing Tise; 6f If the addressee is no Tonger -employed by your T ey
i organl.ationt please notify RADC (COES) Griffiss AFB NY 13441~ 5700,
This will assist us in maintaining a cutrent mailing list,

Do not return copies of this report unless contractual obligations or
fotices on a specific documeént require that it be returned.

REPORT DOCUMENTATION PAGE | G horosbaoras

Pubic reporting burden for ths colection of rormation is estimated tosverage § hous par response, Nccing the trme for reviewing Nstruchons, searchng eastng Cata sources,
gatherng and martsring the cets Neeced, snd compistng and revewng the colecton of infarmeton. Send commernts regarding ths trden estimate or sy cther sspact of thes
colection o rformetion, Neludng suggestions for reducing this burden, to Washington Hesdguarters Services, Orectorate for ommetion Operstions andReports, 1215 Jotferson
Davie Highwey Suke 1204 Arington VA 22202-4302, snd to the Office of Manegerment and Budgat, P sperwork Reduction Proect (0704-0108), Weshinggon, DC 20503,

I

1. AGENCY USE ONLY (Leave Blank) 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED
Decenbexr 1990 Final Sep 88 to Mar 90
4, TITLE AND SUBTITLE N 5. FUNQING NUMBERS
TRANSACTION GRAPHS: A\ SKETCH FORMALISM FOR c /0’30602—87-D—0092
ACTIVITY COORDINATION PE - 63728F
PR - 2532
UTHOR(S,
64 ® TA - QOB
Michael Karr WU - 04
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Software Options, Inc.
22 Hilliard St
Cambridge MA 02138

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING}‘MONI’TSS&%
-Rome Air Development Center (COES). AGENGY REPORTN
Griffiss AFB NY 13441-5700 RADC-TR-90~-347

11.-SUPPLEMENTARY-NOTES
RADC Project Engineer: Douglas A. White/COES/(315) 330-3564

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Mwarim 200 words) . .
A primary objective of the Knowledge~Based Software Assistant is the automated coordinad

tion of all activities comprising the software development process. This automated
activities coordination will provide support for managing communications and enforcing
policy in software development projects while at the same time enabling automation of
the software process.

The purpose of transaction graphs is to sexrve as a formal basis for an implementation of
an activity coordination system. The essential idea is that a transaction graph speci-
fies a distributed computation, which serves as a microcosm of the real-world activities
being coordinated. The nodes of the graph correspond to activities, and arcs serve to
specify interactions between activities.

Transaction graphs are cloged under certain operations and are composable in natural
ways. These properties make them a suitable foundation for the detailed design and
implementation of tools that aid in coordination. This report addresses how the form
alism can be applied to issues such as user interfaces to the system, intuitive means

of specifying patterns of coordination. <:—
w

14. SUBJECT TERMS © 15 g«gmesa OF PAGES
Formalism, activity coordination, communication protocol,
process program

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION |20. UMITATION OF ABSTRACT
OF REPCRT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

16. PRICE CODE

NSN 7540-01-280-5500 Standard Form 298 (Rev_2-89)
s glggsuénd by ANSI Std 23918
1

Transaction Graphs

Contents
1 Introduction 1
2 Basics 3
2.1 Structure e e e e e e e e 3
2.2 Execution e e e e e e e 5
2.3 Graphical Condensation 8
2.3.1 PinchingTwoNodes 8
232 ShrinkingLoops e 10
2.4 Projected Execution e 13
2.5 SUMMATY . . o v o et e e et e e e e e e e e e e e e e 16
3 Connections to Reality 17
3.1 Parameterization and Instantiation e e 17
3.2 Operations on Activity Instantiations e e e 18
3.3 Userlnterface e 19
34 History i i e e 20
3.5 Implementationof o, 7yando o o 21
3.6 Cutover e e e e e e e 22
4 Some Common Idioms 28
4.1 Deleting Arcsand Nodes 0. 25
4.2 Subgraph Extraction o o o o 27
4.3 Collapsing Parallel Arcs 28
4.4 Products of Isomorphic Graphs 30
4.5 Exclusive Access i e e e e 32
4.6 Procedure-Based Activity Descriptions 36
A The Universal Activity Description for a Protocol 41
Accession For A
NTIS GRA&I
DTIC TAB
Unannounced 0
Justification |
By
Distribution/

Availability Codes

Avail and/or
Dist Special

a4 |

Transaction Graphs

1 Introduction

The goal of this report is to present a formalism which will provide the basis for an imple-
mentation of a system for activity coordination. Our intent here is to provide the intellectual
groundwork and architecture for the system, rather than a detailed design. In this introduc-
tion we will discuss the system criteria which guided the development of the formalism, and
in subsequent sections, we present the formalism itself and show how a system based on it
can satisfy criteria for the system.

The overriding requirement for an activity coordination system is that it be integrated
into the normal everyday activities of the people whose activities are being coordinated.
The first consequence of this requirement is that the system must, at a fundamental level, be
distributed. Because our intended users are national organizations, “distributed” in this set-
ting means not only on local area networks (where communication is essentially continuously
available), but also on networks where communication is more sporadic (e.g., by occasional
dialup). In particular, the system cannot rely on any centralized execution component.

A second consequence of the requirement that the system be integrated into the normal
activities of its users is that the system must be extensible. We assume that the normal
activities of its users involve contact with computers, but we cannot assume much more
than that—different user communities will use different machines and different software.
If a single activity coordination system is to be of widespread use, it must be possible to
connect it to a variety of existing software: without a-connection, the use of that software
remains unaffected and thus uncoordinated. On the other hand, it is clearly not desirable
for the activity coordination system to duplicate functionality of existing software. Rather,
the system might control access to such software, might supply some of its input, and might
look at its output to assist users in subsequent parts of an activity. It is in making such
connections that extensibility is a prerequisite—a closed system simply will not be able to
supply the necessary degree of integration.

If an activity coordination system is to be successfully integrated into day-to-day activ-
ities, it must be intuitive, i.e., easily understood by non-technical users. While there are
many factors involved in making a system intuitive, we feel that a graphical aspect to the
system is one of the most important. We use the word “graphical” here in two ways: in the
mathematical sense, as a structure with nodes and arcs, and in the computer system sense,
as a bit-mapped user interface. The use of graphs to describe coordination is quite com-
mon: pert charts, organizational charts, and communication networks are examples familiar
to people who are not computer experts. And the use of graphics by the best computer
interfaces scarcely needs mention.

It would be highly desirable if the extensibility of the system could be accomplished, at
least, in part, at a very intuitive, presumably graphical, level. This will not be possible at
the low level of connecting existing software to the system, but it should be possible for non-
experts to connect existing pieces together to provide graph-based high-level descriptions of
activity for participants of the system, who could in turn understand “what is happening”
in terms of these graphs, and moreover, to be able to interact with the system via such
graphs, when this makes sense. Thus, we are proposing that an activity coordination system
must have a linguistic component that provides for distributed programs and yet is easy to

Transaction Graphs

understand and use! We are aware that this is a difficult, if not impossible, goal, and it is
only by restricting the linguistic component to the very highest level that we have a chance
of fulfilling it.

Another point to be emphasized abont the linguistic component is the necessity of the
composability of the constructs and of their parameterizability. Without these classic con-
cepts from programnming languages, it is impossible to have the modularity that makes it
possible to reuse existing components and to build large systems.

In addition to the general characteristics of distributedness, extensibility, and intuitive-
ness, there are several technical issues specific to the arena of activity coordination that
pervade the design of a system and thus the underlying formalism:

o user-interface—How does a user find out what is going on, and what is to be done
next? How is this related to the description of the coordination?

¢ history—How did the project get into its present state? How is the viewing of history
related to the user interface (which usually views the present)?

¢ simulation—How might things go from here?

e cutover—Descriptions of activities change while the activities themselves are under
way. How can this be managed?

¢ summarization—No single person wants (or may be allowed)-to see all of the informa-
tion known to the activity coordination system. How can information be summarized
for presentation to the user or archiving as history?

In this report, we shall discuss transaction graphs, a formalism that provides a framework
in which useful solutions to these problems may be tailored for specific applications.

Transaction Graphs

2 Basics

Before giving the semantics of transaction graphs, it is necessary to define their structure.
But in understanding the structure, it is helpful to have a glimpse of the key semantic idea:

¢ using an undirected graph with largely independent computations at the nodes (cor-
responding to “local” activities),

e coupled with transactions along the arcs (corresponding to the ways in which the
activities interact).

The distributed ccmputation of an exacuting transaction graph is a machine-based micro-
cosm of the real-world activities being coordinated. It guides the users, records their actions,
and presents information about the state of the world.

There are several important features which distinguish transaction graphs from schemes
liko CSP (commmunicating sequential processes) [Hoa84]. First, the state of each of the
computations is visible in a controlled way—the visibility of state provides the basis for
presenting information to the users of the system. Second, the use of transactions (which will
be explained in section 2:2) seems to provide a better basis for activity coordination than
mere message passing, because -it more succinctly constrains the behavior of the involved
computations. Further, limiting the transactions to those that take place in a specified
graph guarantees a simple, intuitive means of depicting patterns of communication.

2.1 Structure

We begin the discussion of the structure of a transaction graph with the definition of a
signature, which is written a bit like a procedure header:

° (nl D1y v ey nkIPk)

— The n; are distinct symbols.

— The p; are protocols, drawn from a set P.

As we will see, such a signature describes a node, and each n, : p, is associated with one of its
k adjacent arcs. The symbol n, is the name of the arc relative to the node, and p; describes
behavior on the arc from that node’s point of view. We will assume a “transposition”
operation which takes a protocol and produces a protocol for the other end of the arc:

o T.P - P, where p™ =p, forallpe P.

Perhaps the simplest example of a protocol set is one that directs an arc: P = {0,1}, where 0
means an incoming directed arc and 1 nieans an outgoing directed arc. In this case, 07 = 1.
Another example of a set of protocols can be constructed from the set of types U, where we
let P U x U, ie., a protocol is a pair of types, (t:,!), meaning that the node will make
visible a value of type t,, and will see 2 value of type ¢, made visible by its neighbor along
that arc. In this example, we naturally have (t,,t/)7 = (¢/,%,). As we will see, protocols may

Transaction Graphs

also specify aspects of the behavior along the arc (as the name “protocol” suggests), not just
the types of values.

A transaction graph is an ordinary undirected graph, except that it is allowed to have
dangling arcs (ones that do not atlach to another node). Such a graph is labeled in the
following way:

e Each node is labeled with an activity description, consisting of several components,
one of which is a signature.

¢ Each non-dangling arc is labeled with two names, one each from the signatures asso-
ciated with the nodes at its ends. Pictorially, the name appear: near the node whose
activity description has the signature in which it appears.

o Each dangling arc is also labeled with two names, one from the signature of the activity
description on the nne to which the arc is-attached (this ~ame appears near the node),
and another “grapli-relative” name, appearing at the dangling end of the arc.

e At every node, each name in the signature of the activity description appears exactly
once as the “near” label of an incident arc.

e A graph-relative name appears on only one (dangling) arc.

o Let n; and n; be the labels on a non-dangling arc, and let n; : p; appear in the
respective signatures. Then p, = pl (equivalently, pT = p;). This is called the protocol
conformance rule. :

The last rule here is analogous to a rule found in many ordinary programming languages
for type conformance between actual and formal parameters of a function. Continuing our
example of protocols as pairs of types, if p, = (t;,!), then the protocol conformance rule
says that t; =1, and ¢] = t,.

We close this section by introducing some notation and a definition that will be used
throughout.

¢ Nodes will usually be denoted by the letter u, and arcs by the letter a; in each instance,
subscripts are common.

e If arc a is incident on the node u, the name on a near u is nyq, the corresponding
protocol from the signature of the activity description on u is p,., and the opposite
cnd of a from u will be denoted u/a.

e If a is a dangling arc, then u, is the (unique) node upon which « is incident, and n, is
the graph-relative name on «.

o The signature of a graph "= defined to be (ng : py,0)a, where a ranges over all dangling
arcs.

" Transaction Graphs

2.2 Execution

“Execution” will be defined for transaction graphs with no dangling arcs. The first step is
to describe another component of an activity description d (in addition to its signature):

e An activity description d has an associated set of states Sy.

e In a transaction graph, we shall use the convention that S, denotes S; where d is the

label of u.

o The set of states for a transaction graph is defined to be X, &,, where u ranges over
the nodes of the graph.

An ezecution of a transaction graph consists of a sequence of states for the graph, constrained
by rules given below. The rules involve not only states, but elements of the following;:

e There is a set of values V that are seen along arcs.

Each of the next two components of an activity description is a set of functions involving Sy

and V. The first:

o Let activity description d have signature (n; : p;);. There are functions:

04i:Sq—V

Intuitively, 04 reveals part of the state of a node labeled with d-to the i*" neighbor.

The second set of functions formalizes what happens-at a transaction. In essence, a node
can change the value it makes visible along one arc at a time, based on its own state and
that of its neighbor along the-arc. In conjunction with this operation, it can change its own
state. For reasons we discuss below, the state change is non-deterministic.

o Let d have signature (n; : p;);. There are functions:

7431 Sa X V = 2% where for all s,v,5' € 74(s,v) and j # ¢ : 04;(s) = 0a;(s")

Intuitively, 7,; looks at the node’s own state (in Sy) and the value (in V') exposed by the
neighbor along the i*h arc, and comes up with a new state (an element of 25¢), The condition
says that the state change can affect only the value along the arc where the transaction occurs.

The final component of an activity description corresponds to an out-of-graph state
change, i.e., one not involving a transaction. Out-of-graph state changes correspond ei-
ther to real world events like the passage of time, or to changes not modeled at a partlcular
level of graph structure.

o Let d have signature (n; : p;);. There is a function:

04 : Sq — 254 where for all s,s' € 04(s) and i: 04,(s) = 04;(5")

Transaction Graphs

The condition says that exposed values do not change without a transaction, i.e., an appli-
cation of 74; for some .

Before we can proceed to the definition of execution, there is one last bit of groundwork,
concerning how protocols play a role. The idea is that a protocol is a validation predicate
on the sequence of values seen along an arc. Since values seen along the arc can appear at
either end, we formalize the sequence as pairs ({f;,v:)):, where f; € {0,1}; f; intuitively says
which end the value v; is exposed-on. By convention, f; = 0 means that v; is exposed by a;,
and thus f; = 1 means that v; is seen by 7;. Using S* to denote the set of all sequences of
elements of a set .S, we require that:

¢ An element of P is a predicate on ({0,1} x V)"

The spirit of transaction graphs is that values are seen along arcs, not necessarily transmitted,
and in this spirit, an element of P is allowed to pass judgment only on the sequence of changes
to-exposed values. This can be technically stated as follows:

o Let ((fi,vi))i € ({0,1} x V)*, and suppose there are some ¢; and i with f; # f; for
11 < t < 1y, i.e., there is no change in the value seen at the f; eud of the arc. Then
repeating f;,,v;, after changes at the f;, end of the arc does not affect the value of the
protocol, or technically, every p € P must satisfy:

p({(fi; vi))i) & p({{fis vi))i ~ ({firr vir)))

In practice, we define the action of a protocol as a predicate only for reduced sequences,
by which we mean sequences with the property that if 7; and ¢, are successive indices
with the same f;, then v;, # v;,.

The action of p € P as a predicate must have a proper interaction with the transposition
operator-on P:

e For all p € P and ((fi,v:))i: p({{fi,v:)):) & pT({{1 = fi,vi)):)

In our running example of a protocol as a pair of types (to, 1), we would define (to,?;) to-be
true of a sequence ((f;, v;)); if v; has type ty,, for all <. The point of saying that an element
of P is a predicate on a sequence of seen values is that it can thus be used to specify the
communication pattern that must be obeyed along the arc, not merely the static properties
of individual values.

We shall use the convention that 7,, denotes 74;, where d is the label of node u, and a
is the i*" arc incident upon u. Similarly for Oua

o Given a state of a transaction graph, a subsequent state is one which differs at exactly
one node u, where the new state at u is an element of:

Ou(su) U U Tu,a (sua au/a,a(su/a))

a

Here, s, and s,/, are states of nodes from the given graph state, and « ranges over
arcs incident upon u.

Transaction Graphs

Finally, an execution is a sequence of graph states, in which:
o Lach state but the first is subsequent to the previous element in the sequence.
¢ On any arc, the values exposed along that arc satisfy the protocol on the arc.

Note that this definition implies that changes at nodes occur serializably—execution does
not allow the two nodes on an arc to change simultaneously, i.e., two new exposed values
cannot be based on two old exposed values.

We promised earlier some justification for the role of non-determinism. The first and
foremost reason is that non-determinism is part of the reality that transaction graphs are
designed to help cope with. Especially because of the modeling and summarizing role of
applications, there is a necessity that the underlying formalism address non-determinism in
afundamental way. We will also see various technical conveniences of this formalization, such
as the following: how do we know when execution of a transaction graph is finished? After
all, the computational model here is quite distributed (as promised): there is no obvious
“exit node”, and specifying one, and its behavior, would be artificial, beneath the level of
the rest of the above formulation. Rather, the fact that 7 and o specify a set of states allows
for a natural, distributed, termination condition.

¢ = LuJ(Ou(su) U LGJT“'“(S“’ au/a,a(su/a)))

Obviously, an execution sequence stops once this condition holds. We shall see other technical
conveniences of non-determinism in later sections.

Even though this paper does not directly address implementation concerns, we should
note that an implementation of 7 does not actually produce a set-of states; rather, it even-
tually picks one state that is a member of the set produced by the theoretical . Thus, the
definition of 7 serves as a specification for the implementation rather than a prescription.
(However, it may well be useful to implement the predicates 74;(s,v) = -and 04(s) = @.)
Similarly, we do not propose literally implementing the predicate corresponding to an element
of P. This too serves as a specification.

In the previous section, we saw that an activity description had a signature, and that
there was a transposition operator on the protocols in signatures. These were necessary
to specify well-formedness of transaction graphs. In this section, we added the following
semantic notions, necessary in the definition of execution.

e For activity description d, whose signature is (n; : p;);, there are also the following
componente.
— A set of states Sy. ,
— A lit of maps o4 : Sg — V revealing part of a state to a neighbor.
— A list of maps 74 : Sq x V — 25, corresponding to transactions along an arc.
— A map o4 : Sy — 25¢, corresponding to out-of-graph state changes.

o Each element of P acts as a predicate on values seen along an arc. The action as a
predicate is well-behaved with respect to transposition on P.

7

Transaction Graphs

We close this section by emphasizing the distributedness of the computational model, i.e.,
its suitability to a truly distributed implementation. There is no assumption of scheduling
here, only that two adjacent nodes racing to perform a transaction on their common arc
can decide who goes first. It may seem odd that when concurrency is the goal, transactivns
around a node must occur one at a time, but this is only the way that one says formally
that transactions are serializable, not that the implementation is required to perform them
serially. Moreover, this approach to the formalism has the advantage of minimizing the
machinery-in the system, and maximizing the flexibility one has in making extensions, i.e.,
implementing functions specified by &, 7, and o. This extends even to concepts that are
often built into the semantics of a distributed system, for example, fairness in scheduling,

2.3 Graphical Condensation

In this section, w:; will show that there is a natural way to define an activity description that
mimics the beha rio: of a transaction graph. This technique of shifting complexity between
the graph structure :ind the activity descriptions has several important consequences. Most
obviously, it means thav transaction graphs can be specified hierarchically—one can place a
node in a graph, much in the same manner that one writes a subroutine and refers to it by
name.

Less obviously, graphical condensation is related to obtaining different views of an ac-
tivity, in the following way. Civen a subgraph of a graph, that subgraph may be collapsed
to a node as a way of summarization, in other words, a particular view of an activity may
involve a particular condensation of certain aspects of the graph structure. A second view
may condense a different subgraph, perhaps partially overlapping the first view. Thus the
same activity may be viewed as occurring on quite different, not even hierarchically related,
graphs.

To be precise, we will define the induced activily description for a transaction graph
from the components of the activity descriptions on the nodes of the transaction graph, and
of course, from the connectivity. Consider two graphs, one with a node labeled with the
activity description induced from a graph, and one with the ncde replaced by the graph
from which it was induced. The result will be that the execution of the two graphs are in
1-1 correspondence. '

The following subsections will discuss graph condersation, in each case giving induced
activity descriptions and a proof of the 1-1 correspondence of executions. There are two
transformations, which together are sufficient to condense a graph to a node.

2.3.1 Pinching Two Nodes

In this subsection we consider the induced activity description for the graphical operation of
“pinching” two nodes, i.e., replacing them with a single node, and aitaching arcs that used to
be incident-upon either node to the new node. In its simplest form, the graph transformation
is:

Transaction Graphs

On the left is a transaction graph consisting of two unconnected nodes; on the right is a
{ransaction graph consisting of a single node, having arcs corresponding to the arcs on the
left, i.e., labeled in the same way (with graph-relative and node-relative names).

We first consider the signature for the new activity description do. Let (nji;, : pji,)i, be
the signature for d;. We will assume that the sets of names are distinct, i.e., ny;, # nai,, for
any ¢; and 7o; if not, they may be renamed. Since we are trying to arrange that both graphs
appear the same on the outside, they at least have to have the same signature, which forces
the-signature of dp to be defined as:

(nn PPy ey Mky DLk TR21 D P21y e o0 g N2k, 3P2k2)

Next, consider the set of states. If the two graphs behave the same, then in general we
would have to have to define Sy, to be Sy x Sy,. Similarly, identical behavior requires:

def {dd,,i(sl) if ¢ < ky

o 04, ({s1,%)) = Odyi-k,(82) otherwise

def le,;(sl,'v) X {32} if 2 S kl
o Tdo_;((31,32)1v) - {{31} X Tdy imky (32,'0) otherwise

o 04,((51,52)) & 04, (1) X {82} U {51} X 04 (s2).

This effectively defines the desired activity description do, which we will call d; x ds.

Result 1 Suppose we have two nodes u; and u, of a transaction graph, with activity de-
scriptions d,, and that we obtain a new transaction graph by pinching them into a single
node uy which we label with d; x d5. Then there is a 1-1 correspondence between executions
in the two graphs.

Proof The “correspondence between executions” can be made precise only by first being
precise about the correspondence between states. In the two graphs, the states are given by
the following respective sets:

X S,and (X 8,) x Sy

uFugup

But Sy, = Su; X Su,, 50 there is a clear correspondence between states, which involves only
re-ordering and restructuring tuples.

(...s1...82..) = (o oo o (81,82)

Transaction Graphs

With this correspondence of states, it is clear from the definition of oy, and the fact that
oy, is unchanged for i # 1 or 2, that at corresponding states, the same values are exposed
at the corresponding ends of all arcs.)

The key to the argument is to look at the possible subsequent states of corres - >nding
states. For any subsequent map in the “before” graph which differs at a node other than u;
or ug, there is trivially a subsequent map in the “after” graph differing at a node other than
up, and vice versa. If the change occurs at u;, changing s; to s, there will be a subsequent
map for the “after” graph in whick (s, s2) is changed to (s}, s2) or (s1,s5). Conversely, any
change at ug will be of this form, and thus there will be a corresponding subsequent state in
the “before” graph. In short, there is a 1-1 correspondence between subsequent states, and
hence a 1-1 correspondence between executions.

a

Define two activity descriptions to be equivalent, denoted =, if they have the same signature,
if there is a 1-1 correspondence between states, and if under this correspondence, 7,0 and o
are all equivalent.

Result 2 dl X dg = d2 X d] and (dl X dg) X d3 = d1 X ((12 X d3)

Proof In the first case, the correspondence between states is that between Sq, % Sy, and
Sa, X Sy, the details of the proof are not worth writing. In the second, we use associativity
of cartesian products to get correspondence of states, and give the proof for o.

o(dlxdz)xds(((31,52>,53>)
= 0dyxdp((s1,52)) X {s3} U {(s1,52)} % 0,,(s3)
= (04y(s1) % {52} U {s1} x 04,(52)) X {3} U {{s1,52}] x 045(s3)
& 04,(s1) X {52} x {83} U {1} X 04,(52) x {83} U {s1} x {82} X 04,(53)

Starting from o4, x(d,xds), We get the same expression. Details for o and 7 are omitted.

O

To summarize this section, we have shown that given any transaction graph G, we can
construct a graph witk a single node whose execution is essentially the same as that of G.
The activity description for this node is given by:

X d,, where d, denotes the activity description that G assigns to u
u€G

By the preceding result, the order in this product doesn’t matter.

2.3.2 Shrinking Loops

While the techniques of the previous section condense an arbitrary transaction graph to one
having only a single node, the activity description for that node is not what we want to call
“the” activity description for the graph, because the pinching process leaves arcs both of
whose ends are incident upon the single node; such arcs are called loops. Because pinching
nodes does not affect the set of arcs, there will in fact be one loop on the single node for every

10

Transaction Graphs

non-dangling arc in the original graph. In this section, we consider the graph transformation
of removing a loop.

The reason for the terminology “shrinking” is that while from the standpoint of only the
graph structure, it looks as if the loop is simply being removed, from the point of view of the
activity descriptions, the semantics for the loop is being pulled inside the node, i.e., turned
into an out-of-graph change of state.

Let d have signature (n; : p;);. For convenience, we will assume that the loop has node-
relative names ny and ng, so that the signature for d' is (n, : p;)i>2. We naturally define Sy
to be S4, and carry over the definitions of o4; and 74, for ¢ > 2. The only non-trivial part
of the construction is that what were previously transactions along the loop must become
out-of-graph changes, as seen in:

. od:(s) af Od(s) U Td,l(s, 04,2(3)) U Td,z(é‘, Os,1 (3))

This completes the definition of d’, which we denote by d — [1,2]; more generally we give the
pair of indices removed. We will also-use the notation d — @ when-it is understood that the
indices arise from an arc a that is a loop at a node labeled by d.

Result 3 Suppose a node u of a transaction graph is labeled by d and has a loop a, and
that we obtain a new transaction graph by removing arc a at u and replacing the label with
d — a. Then there is a 1-1 correspondence between executions in the two graphs.

Proof Unlike the case in the previous subsection, here the sets of states are identical. For
subsequent states that differ at a node other than u, the correspondence is immediate, as
is the case of u when the state change is due to a transaction along an arc other then a.
The remaining state changes at u in the “before” graph are either out-of-graph changes, or
transactions along a, all of which correspond to out-of-graph changes at the corresponding
node of the “after” graph, and conversely. Thus there is a 1-1 correspondence in subsequent
states.

a

Not only does the order of shrinking arcs not matter, but the operation “commutes” with
pinching:

Result 4 Let 7y, 1o, i3 and 74 be distinct indices of the signature of an activity description
d. Then:

(d = [t1,32)) = [d3,14] = (d = [i5,34]) = [i1, 2]

Trapsaction Graphs

Result 5 Let 4,17, be distirct indices of d;, and let d2 be an activity description. Then:
(d1 -_ [1:1,?:2]) X dg = (d1 X dz) -— [?:1,'&.2]

(The notation here assumes that signature indices of d; correspond to indices for the “d;
part” of dy X d.)

Proof In both cases, the signatures are the same, as are the set of states and the actions of
o and 7. In the first result, the expression for o for the left hand activity description expands
out to:

(0a(8) U Ty (5, 00,5(8)) U Ta (5, 04a(5))) U Tayig (85 04 (5)) U Tayiy (5, 0 (5))

The right hand activity description expands out to a similar expression with i; and i; ex-

changed with 73 and 7, respectively. So the result follows by commutativity and associativity

of “U”. '
In the second result, the computation is messier, but for completeness, here it is:

O(d; ~[iy ig)) xd2 ({81, 82))
= 04y—fiy,ir)(51) X {52} U {81} X 04,(s2)
= (Od, (1) U Ty iy (81, 041,55 (81)) U Ty i, (51, 0y (81))) X {s2} U {51} x 0g,(s2)
= 0g,(s1) X {52} U {81} X 04,(82) U 74, 4,(51,04y,i,(51)) X {82} U 74,5, (51,04, 5, (51)) X {82}
= 0g;xdy ({81552)) U Tay g iy ((S15 82) s 0y xda iz ({515 52))) U Ty xdy 2 ({815 82) 5 0ty xda i ({81, 52)))
= odxxdz—[il,izl((31)52>)

In the “” step, we are using the fact that since i; and ¢; are indices for dy, 74, .(51,v) X {s2} =
Tdy xdy,i({S1, $2),v), for ¢ = ¢ and ¢, and similarly for ay, ;.

a

From the first of these results, we can use the notation d — {[¢;,%;]}; to mean d — [¢;,%;] —
[¢2,%5) — .. ., because the order doesn’t matter. Similarly, if {a;}; is a set of arcs, we can use
the notation d — {a;}; without ambiguity.

With these results, it is possible to condense an arbitrary transaction graph G to a graph
with a single node and only dangling arcs, and having essentially the same execution as G.
The activity description on the single node, which we call the activity description induced
by-G, is given by:

de & XGdu — {a € G] a is non-dangling}
u€

In many respects, the ability to obtain an activity desciiption that coiiesponds to a graph
dictated the technical details of the definition of an activity description. For example, sup-
pose that we had defined an activity description to allow simultaneous change of exposed
values. Then there would be a class of activity descriptions which could not be realized as
transaction graphs. Or suppose that we had not allowed out-of-graph changes to the state.
Then transaction graphs would not be closed under the shrinking of loops.

12

Transaction Graphs

In summary of these first two subsections, we have seen that the definition of activity
descriptions and transaction graphs is done in such a way that the complexity of a transaction
graph can be traded off against the complexity of the state of its nodes. There is nothing
about the behavior of an activity description that is particularly different from the behavior
of a transaction graph; in other words, there is no particular aspect of behavior that must
be put into a graph, or must not be put into a graph. We believe that this property enables
the construction of a layered system of activity descriptions with clean encapsulation.

2.4 Projected Execution

In viewing an ongoing activity, it is important to be able to select only part of the informa-
tion that is necessary for the execution of the transaction graph as a whole. Naturally, which
information is selected depends upon the view in question. The goal of this section is to
structure the selection of information in such a way that a view makes sense on its own. The
technical approach is to require that the state changes seen in the view are actually an exe-
cution in a transaction graph that is related in some well-understood way to the transaction
graph being viewed. Thus, where in the previous section we studied transformations with
1-1 correspondence in executions, here we are interested in transformations which have the
property that for every execution in the original transaction graph (the one being viewed),
there is an execution in the transformed transaction graph (the view), but not necessarily
vice-versa. That is, the set of executions in the view contains (and may greatly exceed) those
in the original graph. This is because of the loss of information in the transformed graph,
which causes an increase in the non-determinacy of o, 7 and o.

In further contrast to the previous section, there we always changed the graph structure,
but kept 1-1 correspondence in the states. Here, it suffices to keep the graph structure the
same, and change only the activity descriptions on nodes. Imagine two copies of the same
graph structure (not transaction graphs, yet), one drawn in a plane directly above the other.

Turn each of these graphs into a transaction graph by assigning an activity description to
cach node. Further, assign a state to each node, where the states on each of the planes
together make up the state of an execution going on in that plane. The bottom plane we
will view as the detailed execution, and the top plane as a view on the detailed execution—a

13

Transaction Graphs

“filter” through which we look at the “real” execution. This view is formalized as a projection
mapping the bottom to the top plane, where this projection behaves “properly” (one might
say homomorphically) with respect to the functions o, 7, and o.

The-essence of the subject here is maps from one activity description to another. We will
denote such maps with II, and by abuse of notation, also use II for the map of constituent
parts of an activity description. A map II must have the following constituents:

o A map that takes signatures to signatures: (n; : p;); = (n; : Oi(pi))i
¢ A map that takes a state to a state: I1: Sg — Spyg)

o Maps for values seen along an arc: v+ II;(v)

o Maps (functionals) taking ga; = ona),i, 7, = Tra),i, and og o11(d)

We are interested only in the subset of such maps, for which we use the term projections,
that have the properties given below. In stating these properties, we further abuse II by
applying it to subsets of Sq, by which we mean the subset of Sp) obtained by applying II
to elements of the given subset.

o For all s € Sy, [Ii(04,i(s)) = onqay,:(11(s))
e For all s € Sy,v € Vi T(74,i(s,v)) € mngay,i(TI(s), i(v))
o For all s € Szt (04(v)) € omg)(T(s))

The “C” in each of the last two conditions make precise the ways in which II(d) may lose
information present in d.

In addition to homomorphic behavior at each node, we need a similar condition for what
happens on an arc:

o Let II be a projection of signatures, and let IIy and II; be projections of values. We
say that IIo and TI; are consistent with IL at p & for any sequence of values ((f;,v;));:

p({{f5,v:0);) = TW(p)(((f5, I 1;(v5)))5)

In other words, ITp and II; project a legal sequence of values-to a legal sequence in the
view.

This property is used in the definition of a projection of a transaction graph G, which is a
set of projections II,, one for each node of G, with the properties:

o Replacing the label d,, on node u with I1,(d,), for all u € G, results in a transaction
graph, i.e., one in which the rule for signatures is met. (In other words, if u; and u,
are connected by arc a, and if u, has protocol p, on a (so pT = p;), then I, o(pT) =

Mz a(p2)-)

o For every arc, the projections of the values at the ends of the arc are consistent with
the projection of the protocol on the arc.

14

Transaction Graphs

Again overloading 11, let II(G) be a projection of a transaction graph G, and for any state
{su}uec for G:

o Let H({su}ueG) déf {Hu(su)}uGG

Finally, we need to define what it means to project an execution of a graph. A naive
definition would be that a projected execution is obtained by applying II to each state in the
execution sequence. This is almost the appropriate definition, but overlooks the situation-in
which consecutive states of the detailed execution project to the same state—a possibility we
certainly want to allow, so that projections can reduce the number of steps in an execution
as well as summarize state.

o Let (s;); be a sequence of states. We define II({s;);) to be the sequence (II(s;,)); where
(¢;); is defined by:

i1 =1 and i;41 = the smallest ¢ > ¢; such that II(s;) # II(ss;)

This completes the-set of definitions we need for the following result:

Result 6 Let G be a transaction graph, and II(G) a projection. Then II projects any
execution in G into an execution in II(G).

Proof Let (s;); be an execution in @, and (s;); its projection. We must prove that for
7 > 1, II(sy;) is a subsequent state to-II(s;,_,). In G, we know that s;, is a subsequent state
to s;,_,, that the state change was localized at a node, and caused either by 7 or by o. Let
sy be the state of u at s;,_,. Then if the change was caused by 7:

Hu(Tu(su)au/a,a(su/a))) g Tﬂ(a),a(nu(su))Hu/a,a(au/a,a(su/a)))
= Tﬂ(a),a(nu(su)ao'ﬂ(u,/a),a(nu/a,a(su/a)))

By Tru), We of course mean 7p,q,), Where d, is the activity description that G places on
node u. Thus, II(s;;) is subsequent to II(s;,_,). The case for o is similar.

The other requirement for an execution is that the values along an arc satisfy the protocol.
This is true for the sequence of states seen in II(G) because it holds for these in G, and by
the consistency requirement on the projections of values.

8

The point is that whatever can be ascertained about executions in the view can be understood
as a result about the detailed execution. Even when using the view as an inspection device,
the condition that it is a projection means that the viewer can understand what is and
what might happen next in a self-contained way—specifically, in terms of o, 7, and o in the
projections.

Transaction Graphs

2.5 Summary

We have defined a graph-based scheme for the computat.onal tracking and modeling of
activity. The basic building block is an activity description, which describes “local” activity.
An activity description governs how its instances can be connected to other instances of
activity descriptions by specifying a protocol for each neighbor. It also governs the evolution
of the state of an instance of the activity description: the parts of the state that are revealed
to neighbors, the rules for changing that part of a state, and the rule for changing the part
of the state not seen by any neighbor.

Structurally, a transaction graph is a graph whose nodes are labeled with activity de-
scriptions. Arcs between nodes receive two protocols, one from the activity description on
the node at each end. There is a conformance rule requiring that the two protocols be the
same, up to a symmetry operation. Transaction graphs are allowed to have dangling arcs,
each of which receives only one protocol. The set of protocols given by dangling arcs turns
out to play the same role as the set of protocols specified by an activity description.

We defined the notion of an execution of transaction graphs. This consists of execution
steps at each of the nodes, governed by the activity description on a node. At any step, a
node may c¢hange its state independently of its neighbors, or it may transact with-a neighbor:
it may change its state in a way that depends upon its state and the part of the neighbor’s
state made visible to it. (The terminology “transaction” comes from the fact that such steps
are required to be serializable: adjacent nodes may race to perform a transaction along an
arc, but one or the other will go first.) The sequence of values exposed along an arc must
obey the protocol on the arc.

It is important that the definition of execution not require any central component in
an implementation. We wish to support applications in which the nodes represent loosely
dependent activities, and in which the activities may be proceeding at distant sites. Thus the
formalism makes quite explicit exactly where the communication happens at each stage, and
it requires only point-to-point communication, so there is no need for a global communication
or locking mechanism.

Much of the discussion here has been toward the development of a calculus of operations
on transaction graphs. The first part of this discussion showed how to preserve the execution
under a set of natural graph-theoretic transformations, while the second part left the graph
structure invariant and showed how to characterize summarization of execution.

The reader may be concerned that trausaction graphs as a formalism do not provide
an immediate basis for the construction of activity coordination programs by novices. In
fact, there is no claim to the contrary, and as we stated at the outset, our goal here is to
_ provide the intellectual basis for an activity coordination system. This basis must meet
other criteria: it must provide a coherent “mentality” for an eventual system, by providing
concepts that are applicable in its seemingly disparate parts. In chapter 3, we shall see how
the somewhat theoretical ideas developed here relate to 1cal world aspects of an activity
coordination system, and in chapter 4 we develop several higher level activity descriptions
and operations on transaction graphs.

16

Transaction Graphs

3 Connections to Reality

3.1 Parameterization and Instantiation

One never specifies an activity description directly, because of the necessity to parameterize
its associated functions and even its set of states. We thus introduce the notion of a param-
eterized activity description. This is.a function which, when applied to arguments, yields an
activity instantiation, consisting of the following components.

¢ A signature.

o A list of functions corresponding to o;.
e A list of functions corresponding to ;.
¢ A function corresponding to o.

o A state.

For example, we don't often want to specify an activity description with a particular-person
wired in, but rather a parameterized activity description which can be invoked with a person
to be named later. Naturally, the parameterization extendsto transaction graphs, which have
the additional point that the same parameter may be referenced by several nodes.

Recall that in section 1 we spoke of the need for extensions both at a primitive level and
at a graphical level. In an implementation, there would- be a way to write parameterized
activity descriptions in whatever language was arnropriate (e.g. C, PASCAL, or Lisp);
this would satisfy the need to extend the set of prunitives. An implementation would also
provide a means for constructing parameterized activity descriptions in terms of its graphical
structure, by specifying:

o A header for the formal parameters of the activity description (not to be confused
with the names on dangling arcs, which become part of the signature of the activity
description).

e A graph in which each end of an arc is labeled with a name (at least implicitly;
conventions can be used to reduce the number of names that must actually be given
directly).

¢ For each node in the graph, an expression which will evaluate to an activity instanti-
ation whose signature has names corresponding to the nearby names on arcs incident
upon this node. These expressions typically involve the above-mentioned formal pa-
rameters.

When an activity description is specified in this way, its application to actual parameters
yields an activity instantiation whose signature, o, 7, 0, and state are induced, as described
in section 2.3, from the activity instantiations that result from evaluating the expressions on
the nodes. This provides a more intuitive level at which to construct activity descriptions.

17

Transaction Graphs

We have thus far mentioned two extremes in specifying parameterized activity descrip-
tions: -the primitive level, specified entirely in a standu.d programming language, in which
the resulting activity instantiation has no internal graphical aspect, and the “high” level,
specified in terms of a static graph, and thus having the graphical decomposition. An im-
plementation should also provide for hybrids of these two extremes: it would be useful to
be able to write parameterized activity descriptions which produced activity instantiations
whose graph structure depended upon the parameters, for example, the number of arcs leav-
ing a node might depend upon the size of a sét parameter. The resulting instantiation would
appear to a user as if it were executing a graph-based activity description, rather than a
primitive activity description. Thus, hybrid parameterized activity descriptions provide a
powerful means of encapsulating regular graph structure, even if it is not statically fixed by
a parameterized activity description.

3.2 Operations on Activity Instantiations

In the previous section we defined the fundamental means of constructing an activity instan-
tiation, namely, the application of a parameterized activity description to actual parameters.
In this section, we discuss operations on these objects. The most obvious are to set one in
motion—to begin execution—and to view the current state of the state. Indeed, these will
probably be the prircipal operations done by participants in coordinated activities.

Equally important to implementers and extenders of the system are implemented versions
of some of the operations on transaction graphs and node descriptions discussed in chap-
ter 2. In particular, it is possible to obtain activity instantiations not only by their ab-initio
construction using parameterized activity descriptions and transaction graphs, but also by
operations that have activity instantiations as arguments. Corresponding to the Results of
section 2.3 and 2.4, the following are candidates for implementation:

e pinching two vertices—takes an activity instantiation based on a graph, and a pair
of nodes-of that graph; yields an activity instantiation based on a graph obtained as
described in Result 1.

e shrinking loops—similar to the above, but based on Result 3.

e useful combinations of the above, for example an operation that takes an activity
instantiation based on a graph and a set of nodes of that graph, and yields an activity
instantiation based on a graph obtained by pinching all the nodes in that set and
shrinking all the loops incident upon the new node.

o projection—takes an activity instantiation and a rule for projecting its signature, func-
tions, and state; yields an activity instantiation as described in Result 6. (If the given
activity instantiation is based on a graph, the projection rule would be specified node-
by-node.)

It is important that all these operations be done in such a way that the original instantiation
and the resulting instantiation conceptually share the same state, so that execution of one
is quite directly an execution of the other.

18

Transaction Graphs

Another essential operation on activity instantiations, one that has no interesting math-
ematical counterpart, is this:

o copy—takes an activity instantiation and yields a distinct activity instantiation with
the identical state.

This has obvious essential roles in debugging and backup, as well as uses discussed in later
sections.

While there is no claim that the above list of operations on activity instantiations is
exhaustive, and while we would certainly consider extending it, we nevertheless claim, on
the basis of later sections of this chapter and of chapter 4, that the operations have wide
application.

3.3 User Interface

A crucial aspect of an activity coordination system is its user interface. In this section we
discover that the program that deals most directly with the user—displaying the state of
activity instantiations and passing directives from the user to activity instantiations—can
literally be an activity description in the process of executing. Thus, there is no fundamental
distinction between a user's connection to the system and the way that the system works
internally.

We will begin by discussing a particular projection of an activity instantiation (as dis-
cussed in the previous section), called interface. The result of interface is-an activity instan-
tiation whose activity description has a degenerate 7 and o—mathematically, (s, v) df 95
and o(s) 4l 95 for every s and v, i.e., from the point of view of 7 and o, the next state is
completely unspecified. In the implementation, the meaning of this is that all the changes
to the state arise from out-of-graph communication.

While 7 is totally useless in constraining behavior, it is quite useful in other respects. To-
explain how, it is first necessary to describe the state of the projected-activity instantiation.
There are two aspects to it:

o It shares state with the argument of interface.
o It contains information that indicates how to display the result.

The1act that the result of interface shares state with the argument means that it can display
it on the user’s screen. The additional information records the layout of nodes (which the
user may change), scrolling position, and so on.

In the other direction, the result of interface also is aware of what the user is doing—
typing, mousing, clicking—and is responsible for translating these iuto the form of out-of-
graph messages expected by the argument to interface.

The above discussion has talked about an interface projection as if there would be only
one. Even if this were the case, there is an advantage to implementing it as a projection,
because it is not necessary to design into the basic machinery any “special features” which
enable communication with a user. A larger payoff is that in reality there will be several

19

Transaction Graphs

interfaces. For example, in the development of the system, we will probably first want a
simple text interface, and later, a-more graphical one. Another example is an interface that
would tie activity instantiations to an active database. Yet another example is considered
in the next section.

3.4 History

In the language of transaction graphs, a history is equivalent to an execution—it is simply
a sequence of states. In an implementation, a history is obtained by interfacing a journal
keeper to an activity instantiation. In other words, a history interface responds to a change
not by updating the screen, but appending an entry to a file.

Not just any entry will do, of course. The point of a history is to be able to reconstruct
an execution, which constrains the nature of the appended entry. The natural way for a
user to view history is with exactly the same machinery used to view the original execution,
except that (a) it will not be possible to affect the execution (e.g., by making a decision),
and (b), it will be possible to };o back and forth in time, either by steps, or to the state at a
particular time. This specification suggests a natural implementation, in which literally the
same interface is set up with a state that is shared not with the state of the original activity
instantiation, but with the state of a “history viewer”, itself an activity instantiation. The
arguments to the parameterized activity description yielding a history view cr are the history
interface instantiation and the journal file. It begins by copying the state and noting the
corresponding point in the journal file. Its execution consists of listening to the user say
things like “go forward”, “go back”, and “go to time z”; the changes will automatically
appear in interfaces referring to the history viewer.

A pragmatic difficulty in dealing with history is how much of it to-keep. It is fair to say
that this is not a system problem, because it is ultimately up to the user, but it is also true
that the system must provide facilities that allow the user to cope with the problem. The
most obvious requirement is that it must be possible to cut off the front end of a journal;
events that happened too long ago (or that are now archived off-line) can be forgotten. The
more interesting issue is the amount of detail that is kept, a problem already mentioned in.
connection vith observing an ongoing activity. Naturally, we propose the same means to
deal -with it, namely, projection. Thus, while a history is always a recorded execution, that
execution may not be the lowest level execution, but rather a projection of it that removes
extraneous detail.

The fact that history recording and viewing are implemented as activity descriptions,
and the use of projection to remove detail, makes possible useful combinations of these
techniques. For example, one might record quite detailed history, which is kept on the disk
for only a limited period of time. As the detailed history is deleted, (and possibly archived)
it can be projected onto a less detailed history, which is small enough to keep over longer
stretches. Note that a projection may be designed after the recording of detailed history, so
if at some later phase in a project, one wants to see a certain projection of history, one goes
to the archive and re-executes the history, projecting it in the desired way.

Transaction Graphs

3.5 Implementation of o, 7, and o

In the formalization of activity descriptions, we defined 7; and o as functions that yield a set
of possible states, and an execution step as a choice from the union of the results of 7; and
o. In connecting transaction graphs to reality, the choice must be resolved, and to keep the
implementation distributed, it is natural to impose the responsibility for the resolution on the
implementation of an activity description. Thus, while the functiots 7; and o are formally
non-deterministic, an implementation of an activity description is deterministic—what is
non-deterministic in reality is the order in which events occur.!

An activity instantiation may need to persist for weeks or months, and as we have em-
phasized, may take place on a widely distributed network. Thus, while we tend to think of
an activity instantiation as an execution, it cannot coriespond literally to, for example, a
Unix process. In [Kar89] we developed machinery for connecting a database and an operat-
ing system to provide a facility for persistent execution. This machinery provides a natural
basis for an implementation of activity descriptions, as we now briefly outline.

Let us assume that we have an activity instantiation, based on a graph, and. that all of
its nodes are “asleep”, i.e., stored on a persistent medium. In this state, the activity instan-
tiation is waiting for an out-of-graph event, such as the passage of time or a user action.
In this discussion we omit the details, but such an event has the effect of “awakening” a
node of the graph, causing the execution of a “transition program” [Kar89]. The implemen-
tation of the activity description for the awakened node is in its transition program. The
execution of the activity description takes whatever action is appropriate, including perhaps
transactions with other nodes, which may awaken their transition programs (perhaps on
distant computers). Eventually, the transition program for the awakened node completes its
set of actions, and puts the activity instantiation for that node back to sleep. Other nodes,
whether awakened by the node first awakened or by independent out-of-graph events, may
still be awake, and go on executing their transition programs independently.

This brief outline necessarily omits many issues which would have to be considered in a
full-fledged design for an implementation, but there are several points that are natural to
raise even at this level of detail. First, we note that while the theoretical discussion is in-terms
of ¢, 7, and o, an implementation of a primitive activity description is, at the outer level,
a dispatch on the reason for which it is being awakened—some kind of out-of-graph event,
or because of a transaction initiated by a neighbor. Second, whatever the reason a node
is awakened, it may engage in transactions with its neighbors, when it does so, it must be
prepared to cope with the rejection of its transaction, and allow the neighbor’s transaction to
occur first. This is necessary because in a distributed system communication takes time, and
independent nodes may “decide™ to engage in a transaction without knowing, until it is too
late, that they are in a race. Third, when an activity instantiation for a node u is asleep, then
Tu{Sus Vujae) = @ for all arcs incident upon w. I in addition o(s,) = @, the vertex is said
to be stable—it can be changed only by transactions. Thus, if the activity instantiations
for all the nodes of the graph are stable, the termination condition of sectinn 2.2 is met.
This suggests that each activity instantiation record whether o(s,) = (), thereby enabling

IThis is a slight over-simplification —we would not wish to preclude the use of deliberately randomized
algorithms in activity descriptions.

21

Transaction Graphs

detection of termination.

Finally, there is the necessity to provide for shared state, as we discussed in previous
sections. In a distributed system, it is not feasible to do this literally. However, the desired
effect can be achieved by establishing the convention that implementation of an activity
descriptiony announce changes to its state. Activity instantiations that view other activity
instantiations arrange to receive out-of-graph events when such changes occur, and are thus
able to track the progress of viewed activity instantiations. (We have used this technique
successfully in the implementation of the E-L system.)

In summary, the implementation of primitive activity descriptions, in so far as their
incorporation into the activity coordination system is concerned, is a well-structured task.
These functions must:

e respond to possible events, including transactions of neighbors and out-of-graph events;
¢ when necessary, engage in transactions with neighbors, which may possibly be rejected;
» announce changes of state; and

¢ indicate whether the activity instantiation is stable.

We anticipate no great difficulties in filling out the design and doing the implementation.

3.6 Cutover

In section 1, we mentioned the “cutover” problem: how to change descriptions of activities
while the activities themselves are under way. We are now in a position- to pose the problem
in a more formal way: how do we modify an activity instantiation whose execution is under
way? We can [urther set forth a criterion for the form a solution should take:

o If both the old and new activity descriptions are specified as transaction graphs, we
would like to express the cutover technique at the Jevel of transaction graphs.

Recall that execution is defined for only those activity descriptions with no dangling
arcs, l.e., with an empty signature (section 2.2). Let us consider an activity description d
with no internal graph structure, or at least where the graph structure has been removed by
condensation to a single node, as described in section 2.3, so that the only function to worry
about is 0 : 8§ — 2°¢. The most general definition of a cutover is a map that takes o,s to
o',s', the idea being that execution continues using o’ on s’. There are two problems with
this definition. First, even given the description of the map, what are the engineering issues
in actually effecting the cutover of an activity instantiation? Second, the definition is so
general that it is useless--it provides no insight into how {o obtain o’ and s’ in a reasonable
way.

We consider first the engineering issue. The restrictions we have already imposed on
activity instantiations make this problem less terrifyingly impossible than it might first
appear. In particular, the fact that the state of an execulion can be written to disk and
restored to fast memory means that there is a well-specified clean point at which cutover

22

Transaction Graphs

can occur. In implementation terms, all that is necessary is to ensure that the activity
instantiation is in persiotent storage (rather than fast memory), and then to change the
transition program and state associated with with it. All of the many issues that would arise
in cutting over an executing UNIX process simply don’t arise.

We now turn to the issue of producing o' and s’. The easy part is producing a new
o': this corresponds to changing the program, an activity with which we are all familiar.
As a simple first case, then, we characterize the situation in which s = s’ (but 0 # o) as
state-invariant cutover. In addition to being used in the obvious way, to indicate that from
now on, things will be done differently, state-invariant cutover may be used to recover from
states that are erroneous because of bugs in an activity description. Recall that the history
viewer literally operates on a states. The technique is to back up in time until a satisfactory
state is reached, and then to resume execution with the new activity description (o') and the
desired state (s'). (This technique assumes that history is recorded at the level of detailed
-execution, making that a wise thing to do during debugging.)

We now drop the assumption that the interesting graph structure in an activity descrip-
tion has been condensed out, and propose an approach to cutover that exploits the fact
that activity descriptions often arise as transaction graphs, composed by connecting simpler
activity descriptions having non-empty signatures. The basic idea is to support cutover at
a vertex of a transaction graph leaving the state and activity description at all other nodes
unchanged.

One might claim that in general it is not enough to be able to change a single node; it
‘might be necessary to restructure an entire subgraph. Indeed this is the case, but doing so
actually involves three steps.

1. Restructure the graph by condensing and uncondensing subgraphs to isolate the change
at a single node.

2. Effect a cutover at the node.

3. Restructure the graph to correspond to the desired structure of the revised activity
description.

The restructuring of a graph is one that produces a new ¢’, 7/, o' and ¢’ jointly, but in a
way which is very stylized and preserves the essential semantics of the program. As indi-
cated, the new functions are produced from the old by graph operations. From section 2.3,
it is evident that s’ differs from s by transformations of the form (...(s1,...,8%)...) <
(--.,81y...,8k...), i.e., just by grouping operations on tuples. The operations on tuples can
be carried out automatically, given the transformations that take 7 to 7.

There remains the problem: how does a person conveniently create a new state? The
answer is, the same was as always, by executing an activity description. To be more explicit,

/ !

suppose that in graph G, there is a node u which we wish to cut over to a new oy, 7, 0,

and s,. Then, in general, we construct a G’ with vertex u' whose activity description has
the same signature as that on u, with oy, 7, and o, being the desired o7, 7., and o). We
then execute G’ to produce the desired s! as the state at u'. The final step in the cutover is

to say that node u in the activity instantiation based on G is to be cut over to node u' in the

23

Transaction Graphs

instantiation based on G'. This, like state-invariant cutover and graph-restructuring, can be
done in generic way. We should note that it also has the effect of deleting the state at u in
the execution of G, and at all nodes in the execution of G’ other than «'. (An interesting
variation is to continue the execution G’, but for its state at u’ to become the state that
was at u, in other words, for G and G’ to exchange states between u and «'. Admittedly, no
application springs immediately to mind.)

There is no claim here that this trivializes the problem of cutover. This design does,
however, satisfy the criterion that cutover be accomplished at the same level as the changes to
activity descriptions. In particular, a person who is working solely at the level of transaction
graphs (i.e., not introducing primitive transaction protocols) can effect cutover solely in
terms of transaction graphs.

24

Transaction Graphs

4 Some Common Idioms

The transaction graph formalism was deliberately designed to favor formal simplicity and
composability over the inclusion of many “features” at a fundamental level. The rationale is
that if the basic design is clean and powerful, the desired features can be programmed and
encapsulated. In the sections below, we consider common patterns of graph manipulation
that can be done using the fundamental operations described in section 2.3, and we provide
several paradigmatic activity descriptions. The aim here is not to be complete, but to
demonstrate that a high-level system can indeed be build on this foundation.

4.1 Deleting Arcs and Nodes

The basic graph operations previously discussed provide the ability to unconditionally trans-
form graph structure, yet to retain the semantics of execution. It is clearly not possible to
unconditionally delete an arc or node and retain execution semantics, but there is an obvious
condition under which this is possible. For arcs, a sufficient condition is that activity de-
scriptions on the nodes at each end of the arc behave independently of the value seen along
the arc. To be more precise, we say that d ignores arc 1o o Td,, 15 independent of its second
argument, i.e., there is a function 8 : Sy — 25¢ such that:

o 74:(s,v) = 04(s), for all s € Sy.

The fundamental transformation is on activity descriptions:

Let the activity description on the left be d with signature (n, : p,), and assume d ignores
io; for convenience, that on the right will be d' with signature (n, : p;).zi, and functions:

o o4 ; and Ty ; are the same as 04; and 74;, respectively, for 7 # 4.
def
o 04(s) = 04(s) U 0:(s)

Suppose that a graph has nodes u; and u; joined by an arc ap, and that each of u; and u; has
an activity description that ignores ap. The operations to delete the arc may be expressed
as follows:

e Pinch the nodes at each end of the arc, and shrink ap (now a loop), obtaining the
following functions for now node ug:

— 00,4((s1,52)) for @ # ag carries over from o, 4(s;), where a was incident upon u;.

— Similarly for 79,4,((s1, 2),).

25

Transaction Graphs

= o((s1,82)) = 01(51) U02(82) U T1,65(81,02,00(52)) U T2,00($2, T1,00 (1))
= 01(s1) Ub1(s1) U 0a(s2) U ba(s2)

The first cquality comes from shrinking ao, and the second, from the assumption that
u; ignores ay, for 7 = 1 and 2.

e Unpinch ug to obtain] and uj with activity descriptions d,j = 1 and 2, where:
~ Odia and Tdha for a # ao are the same as 0q,,, and 74, ,q, respectively.
— og(s) = 04;(s) U b4;(s)
Thus u} has the above-described transformation of d;.

The results for pinching and shrinking guarantee that the graph with the deleted arc has
executions in 1-1 correspondence with the original graph.

Why would anyone write a transaction graph with a deletable arc? One probably would
not, at least not directly. The real utility of this transformation is in its combination with
projection—even though an activity description does not ignore 7o, a projection might. Thus
projection not only simplifies states and shortens execution sequences, it can also be viewed
as simplifying the pattern of coordination. This is a formal property that corresponds to
real-world experience: at a gross level, certain activities may be described as independent,
while if one takes a closer look, it becomes clear that dependencies do exist.

For deleting a node, the condition is that its activity description has the following prop-
erty:

d is boring & its signature is empty and o4(s) = @ for all s.
Let a node u; have a boring activity description. Then u; can be deleted as follows:
¢ Pinch u; together with any other node uy, obtaining the following functions:

= 04,({s1,52)) = Ta,,i(52)
- Tdo((sl"”)) = {81} X ng,:'(s%v)
= 04y((s1,52)) = 04, (51) X {82} U {81} X 04,(52) = {51} X 04,(52)

The first two items use the fact that u; has no incident arcs, and the last, the fact that
0d, (s) = Q)

o Because d; enters into no transaction that would change its state, and because og4, (s) =
@, the initial state of u; remains forever unchanged, i.e., s; in the above equations is
a constant. Thus there is a 1-1 correspondence of states between u, and ug, given by
Sy > (81,82). Hence, we can map the state on uo back to what it would have been
on up, and revert to the original o4,.74,, and og,. and have a 1-1 correspondence in
execution.

In effect, no trace of u; remains. Of course, an implementation would delete u; directly, and
not literally go through the steps that justify doing so.

As with ignoring an arc, one is not going to write boring activity descriptions on purpose;
their utility arises in connection with projection and other transformations. In the next
section we give an example that combines projection and deletion of both arcs and nodes.

26

Transaction Graphs

4.2 Subgraph Extraction

The goal of this section is to “understand” a subgraph Go of a given graph G on its own
terms, where by “on its own terms” we mean that we wish to leave Gy itself untouched,
and to view transactions along arcs leaving it as contributing to the non-determinacy of
execution in the subgraph. More formally, our strategy is to define a projection on G which
is the identity on nodes in Go. The question then is, what happens to nodes outside Go?
We first consider the special case in which such a node has only one arc, the other end of
which touches a node in Gy, and has (n : p) as the signature for its activity description.
In order to make the projection independent of the graph outside Go, what we need is the
universal activity description for protocol p with name n, denoted d,,. The definition is a
bit technical, but the idea is simple: d,, always responds to a sequence of transactions in a
legal way, but is unpredictable up to the constraints imposed by p. The easy part is this:

o The signature for d,, is (n : p).
o The other constituents depend only upon p, and will be denoted S,, op, 7, and o,.
o 0,(s) ¥ @ forall s €S,

The technicalities for the definitions of &,,0,, and 7, are in Appendix A, where it is shown
that there is a projection from d to dp,.

Generalizing the situation, suppose that a node u not in Gy has activity description d
with signature (n, : p,);. By “i touches Gy, we mean that the other end of the arc whose
u-relative name is n, touches a node in Gy. The projection for u takes d to an activity
description that behaves on arc 7 like the universal activity description for p, if ¢ touches G,
and which etherwise ignores arc ¢. Formally:

o TI((ni: p:)i) & (n;: { pi if ¢ touches Go })

true otherwise

¢ Sn ¥ X8,

1 touches Gy

NleN. det [0p;(s:) if ¢ touches Go
* TH(oa)((87)s rouches Gor) = {0 (or any other arbitrary fixed value) otherwise

. Toi(siyv) ifj =1 N
o TI(r4)((55); touchos Goy v) & { 73 touches Go{ 5 otherwise} if s touches Go

otherwise

® H(Od)((-%‘)j touches Go) d=cf Q)

We omit the proof that there is a projection from d to the activity description with these
components.

Now let us examine the result of this projection. We first observe that an arc between
two nodes not in Gy is ignored by both nodes, and hence may be deleted, by the previous
section. After deleting all the arcs, any nodes that are not adjacent to a node in Go will be

27

Transaction Graphs

4.2 Subgraph Extraction

The goal of this section is to “understand” a subgraph Gy of a given graph G on its own
terms, where by “on its own terms” we mean that we wish to leave Gy itself untouched,
and to view transactions along arcs leaving it as contributing to the non-determinacy of
execution in the subgraph. More formally, our strategy is to define a projection on G which
is the identity on nodes in Go. The question then is, what happens to nodes outside G,?
We first consider the special case in which such a node has only one arc, the other end of
which touches a node in Gy, and has (n : p) as the signature for its activity description.
In order to make the projection independent of the graph outside Gp, what we need is the
universal activity description for protocol p with name n, denoted d, . The definition is a
bit technical, but the idea is simple: d,,, always responds to a sequence of transactions in a
legal way, but is unpredictable up to the constraints imposed by p. The easy part is this:

e The signature for d,, is (n : p).

o The other constituents depend only upon p, and will be denoted S,, o, 7, and o,.

o 0,(s) & @ forall s €8,

The technicalities for the definitions of S,,0,, and 7, are in Appendix A, where it is shown
that there is a projection from d to d, .

Generalizing the situation, suppose that a node u not in Gy has activity description d
with signature (n, : p,),. By “ touches Gy", we mean that the other end of the arc whose
u-relative name is n, touches a node in Gy. The projection for u takes d to an activity
description that behaves on arc : like the universal activity description for p, if ¢ touches Go,
and which otherwise ignores arc z. Formally:

o T((ni: pi)) & (s : { pi if i touches Go })

true otherwise

¢ Sip E X S,
t touches Gp
Mie . def [0p;(s;) if i touches Go
* T(4:)((53); touches 6oy v) = {0 (or any other arbitrary fixed value) otherwise

Xj touches Go { Tp,-(S,','U) lfj = } if 2 touches Go

o T1(74,)((5); wouches Go,¥) & 5 otherwise

otherwise

° II(Od)((SJ)] touches Go) (l'gr ®

We omit the proof that there is a projection from d to the activity description with these
components.

Now let us examine the result of this projection. We first observe that an arc between
two nodes not in Gy is ignored by both nodes, and hence may be deleted, by the previous
section. After deleting all the arcs, any nodes that are not adjacent to a node in Gop will be

27

Transaction Graphs

boring, and thus may be deleted, again by the previous section. Finally, any remaining node
not in Gy will have arcs to one or more nodes in Gg. If the number of arcs is greater than
1, it may be unpinched? until all nodes not in Gp have a single arc that touches a node in
Go. This is the last step of the construction—we now have a graph that embeds Gy but is
completely independent of the graph structure of G not in G.

The purpose of pursuing this is example is to offer evidence of the power of the pinching,
shrinking and projection operations. Starting with an informal notion of wanting to “under-
stand” a subgraph of a graph, the exercise of formalizing this in terms of the operations of
section 2.3 and 2.4 leads inevitably to the necessity of constructing an activity description
that behaves as the most general participant in a protocol, which we called the universal
activity description for a protocol. If we want merely to look at a subgraph of a graph, it
would be overkill to invoke all this machinery. However, if we want to simulate or analyze a
subgraph, or if we want to test and debug an activity protocol with a non-empty signature,
an implemented version of d,, is exactly what we need. So the seemingly technical device
that we used to formalize extracting a subgraph from a graph turns out to have important
connections to reality.

4.3 Collapsing Parallel Arcs

Section 2.3 showed how to condense any subgraph of a graph to a single node up without
loops. Consider a node u; outside the subgraph, which in the original graph had arcs
to distinct nodes in the subgraph. In the transformed graph, the nodes uy and u; will be
connected by several arcs. Arcs that are incident on the same pair of nodes are called parallel;
the purpose of this section is to describe how parallel arcs can be collapsed to a single arc,
and the activity descriptions on the nodes adjusted so that there is still a 1-1 correspondence
in executions. The essence of the transformation is on an activity description:

The heavy arc on the right is obtained by collapsing the two arcs near each other on the left.
Let the activity description on the left be d with signature (n, : p,),. For convenience, let ng
be the name for the heavy arc. (Choose ng # n,,7 > 2.) The signature for the new activity
description d’ will be (ng : po,n3 : pss...,nk : pr), where we have no vet defined p,. Before
doing so, we note that d’ inherits the set of states from d, the definitions of o4, and 7a, for
t > 2, and the definition of o4.

The idea is that a value seen along the collapsed arc consists of the pair of values seea
along the two uncollapsed arcs. There are two technical assumptions that we must make:
the first is that V x V C V, i.e., if v1,v2 € V, then (v;,v2) € V. The second has to do

2The pinching and shrinking transformations are cquivalences, and may be applied in cither direction, by
“un-", we mean in the directicn opposite to the one stated.

28

Transaction Graphs

with a corresponding operation on protocols. Given p;,p, € P, we assume that there is a
p1 X p2 € P with the following action as a predicate:

o (p1 x p2)({{fi,vi))i) & every v; can be written in the form (vi1, viz), and p; ({(fi, vi;))i)
holds for j = 1 and 2.

We note that (p; x p2)T = pf x p¥, i.e., they have the same action as predicates.

Naturally, we let po def p1 X P2, thus completing the signature for d', and to complete the
definition of the entire activity description:

o 000(s) € (041(s), 0ua(s))
o Ta0(s, (v1,v2)) o T4,1(8,v1) U 74.2(8, v2)
e oy(s) def 04(s)

Result 7 Let u; and up be nodes in a graph with activity descriptions d; and dz, and
suppose that a; and a, are parallel arcs adjoining them; for convenience, assume that a, is
the ih arc on each node. Obtain a new graph by collapsing a; and a; to a single arc ao,
and by replacing the activity description on u, by d., as outlined above. Then there is a 1-1
correspondence between the execution of the two graphs.

Proof We can view this as a sequence of elementary transformations:

e Pinch u; and u,, then shrink a; and a,, now loops, obtaining the following functions
for the new node uo.
— 00,0((51,92)) for a # ay,ap carries over from o;4(s).
— Similarly for 79,4((s1, s2),v).
= oo({s1,82)) = o1(s1) x {s2} U {s1} X 02(s2)
U 71,0,(515 02,0, (52)) X {82} U {81} X 72,0, (52, 01,0,(51))
U Tia,(81,02,0,(52)) X {52} U {81} X 72,0, (52, 01,05(51))
= 01(81) X {Sg} §) {31} X 02(82)
U T40(81, 0wr,a0((81,52))) X {52}
U {51} X Tar,a0 (52, 0,00 ({51, 52)))

o Unshrink a new arc ap and then unpinch to get nodes uj, uy with:

_Jooia(si) ifa#ar,a
Pua(s1) = {Ud',ao(si) if a=ao
- Similarly for 7,

= oy(si) = o(s:)

29

Transaction Graphs

The protocol p; x p2 has clearly been constructed to he valid for the communication on ay.
0
Thus, parallel arcs can always be collapsed, assuming that V x V' C V and that P is closed
under the product operations discussed above.

We state without proof several relationships that collapsing arcs has with other opera-
tions. First, shrinking and collapsing commute:

Result 8 Let iy,1}, 2,1, be distinct indices of the signature of activity description d, and
form d’ by collapsing 7; and 42, and 7] and i}, calling the result indices ¢¢ and ¢;. Then:

d = {[21,81), [i2, 82)} = d' - [io,)

0

Result 9 Let ¢y,i2, and i3 be distinct indices of the signature of activity description d, forin
dq1,2),3 by collapsing 7, and 43, and the resulting dangling arc with i3, and form dy (3,3 by
collapsing ¢; and 3, and then collapsing ¢; with the resulting dangling arc. Then:

di1,2),3 = dy 2,3

a

At the beginning of this section, we remarked that collapsing parallel arcs is useful in tidying
up a graph which has had a subgraph condensed to a node. In an implementation this
might be done automatically. In the next section, we shall see another use for this graph
transformation.

4.4 Products of Isomorphic Graphs

A common pattern of activity is the assignment of essentially the same task to several persons,
for example, all members of a committee are to receive a report and submit a review by a
certain date. It is quite natural to describe what a committee member does from the point
of view of one member, but from the point of view of the person who assigns the task to the
committee and who collects the reviews, it is natural to look at one graph that summarizes
the behavior of all the members of the committee.

The notion of projected execution (section 2.4) supplies precisely the right technique for
obtaining from the single graph, the view that is specific to a particular committee member.
What is needed is a way to obtain the single transaction graph that captures the behavior
of a set of participants from a graph that specifies the behavior of a single participant, and
does so ia such a way that it is possible project the appropriate view for each particular
participant.

As the title of this section suggests, we will formalize the notion of “essentially the same
task” to mean that the activity descriptions are based on isomorphic graphs. We do not
require that the activity descriptions on corresponding nodes be in any way related, but we
will assume that arcs which are paired by the isomorphism have the same names—this is
not a real restriction, since renaming is always possible. The details:

30

Transaction Graphs

e Let Gy and G be isomorphic transaction graphs. This product, denoted Gi X Gs, is
constructed as follows:
— Pinch each pair of nodes that is paired by the isomorphism.

— For each pair of dangling arcs paired by the isomorphism, transform the activity
description on the node as described in section 4.3.

— For each pair of non-dangling arcs paired by the isomorphism, collapse the arcs
as described later on in the same section.

— Let the signature of G; be (n; : p;;);; the signature of Gy x G, is evidently given
by (n; : p1j X paj);.

We state without proof several desirable properties of this construction. The first says that
the product is associative and commutative, so that we can write G; x Gy x Ga without
ambiguity, and similarly Xe; G,, where I is an index set. Further, there is an identity
element, so the latter makes sense even if I = ().

Result 10 Let Gy, G2, G; all have isomorphic graph structure. Define 15 to have the same
graph structure, where the protocol on a vertex is the boring protocol with the appropriate
signature. Then:

GixG2Gax Gy G1X(G2XG3)§(G1XG2)XG3 G; x1g 2 G;

a
Product and projection work in the way one expects:

Result 11 Let G, G, be transaction graphs such that G; x G is defined. Let:
o Ii(n; : pij X pas); £ (ns : pig);
o Ii(dy x do) & d;
o Mi(s1,5)) E's;
o II;((v1,v2)) E'o;

Then II;(G; x G) & Gi, for i =1 and 2.

(]

Finally, there is a natural connection between graphical collapse and products of protocols
and graphs.

Result 12 Let Gy, Gy be as above, and for any G, let dg be the transaction protocol obtained
by collapsing G to a single vertex. Then:

dG;xG; = dGl X d02

Transaction Graphs

4.5 Exclusive Access

Because of the strong desire to achieve a distributed system, transaction graphs have been
defined to be quite asynchronous—each node talks to only one neighbor at a time, and there
is no central overseer of the communication. And even this communication does not require
the active participation of the neighbor—in fact the main restriction on this communication
is that the neighbor not be too active, i.e., trying to communicate at the same time.

While the implementation basis for an activity coordination system is necessarily dis-
tributed and thus provides only loose coupling among the constituents, it is also the case
that a rather fundamental form of activity “coordination” requires tighter coupling, namely,
exclusive access—ensuring that among a subset of competitors wanting access to a resource,
permission will be granted to only one at a time. In a distributed system, we can expect
that non-adjacent nodes may concurrently arrive at a state in which they need exclusive
access to a resource, but of course, a node cannot unilaterally decide that it has such access.
There may be several ways to pose the problem in a formal way; the one we choose is based
on a classical two-phase notion: a node announces that it would like exclusive access; some
communication ensues, which results in the node’s being told that all other nodes agree that
it can have exclusive access, or not. If exclusive access is denied, the node may re-try, but
it may also decide, on the basis of the new information it received that it is no longer inter-
ested in exclusive access. This section will provide one formalization of what exclusive access
might mean, and will provide one implementation which gives rise to the desired behavior.
There are no doubt both other definitions of exclusive access and other implementations that
would meet the definition we have chosen, so the goal here is not to provide the ultimate
technique for exclusive access, but rather to give an example of the use of transaction graphs,
admittedly at a rather low level, for a very real and practical problem.

For simplicity, we will assume that all the nodes of the graph are potentiz! competitors.
In practice, this would more likely be a subset of nodes; the subset might even be dynamically
determined. The definition will use the idea that a node goes through phases. Each node
starts at phase 0, and the phases are numbered sequentially. (The phase does not have to
be stored in the node’s state; as we will see, it is assigned only as part of our observation of
the node’s behavior.) The specification for the synchronization is as follows:

o A node in an even phase may enter an odd phase in one of two ways:

— It may announce that it would like exclusive access.

— It may see that some other node has entered an odd phase.

Note that an odd phase does not start until some node wants exclusive access, i.e., no
polling is necessary.

e For all odd k, no node enters phase k + 1 until all nodes have entered phase k.
e For all odd k, exactly one node receives exclusive access.

The solution we propose is based on the idea of a priority for the different nodes, where the
priority is used to resolve competition among nodes during a given phase. We shall initially

32 -

PR gr—

Transaction Graphs

assume that each node has a distinct priority, but after discussing the solution, will discuss
techniques that allow the assumptions to be weakened. A priority is a positive integer.
Values exposed along arcs will be non-negative integers, and will alternate between zero and
positive values. The driving idea is quite simple:

e To indicate that it would like exclusive access, a node begins the propagation of its
priority throughout the graph.

o Nodes with higher priority that are not interested in exclusive access during this phase,
and all nodes with lower priority, assist in the propagation.

¢ BEventually, a node wanting exclusive access will detect that permission has been
granted, or will find itself overrun by a higher priority propagation.

There are probably several versions of a propagation a!orithm; the one presented here is
based on a simple algorithm for marking a connecte <omponent of a graph. A node is
considered “marked” with priority [if it is exposing ! cu an arc. A node wanting exclusive
access attempts to put its priority on each of its arcs, thereby marking itself with its own
priority. It waits to see whether the propagation is successful and eventually finds out
whether it has been granted access. If so, it zan perform the desired action, aad it then
releases its exclusive access.

To make all of thiz completely precise, we describe the set of states for an activity
description d and the definitions of a4; and 74;.

e For a node with k arcs, its state will be a k-tuple of triples, each consisting of two
integers and a flag, denoted v;/v!/ f;.
— v; is the value exposed along the i*! arc.
— v} is the last value seen in a transaction with the i*" neighbor.

— If v; # 0, then f; = 1 if during this phase, the neighbor’s exposed value was first
to become equal to max(v;, v}); otherwise f; = 0.

" — If v; =0 and v} # 0, then f; = 1 perforce.
— If v; = 0 and v} = 0, then f; = 1 means that the node is almost ready to re-enter
the initial state (see the next item).

e Initially, a state is (0/0/0);.

All of the activity descriptions will be the same except for variability in the number of arcs,
and the fact that each d has an innate priority /.

In presenting the definition of 7y, for a node in state (v,/v}/f,);, we shall usc the con-
vention that { % max, (max(v,,v})). Initially, [= 0 at every node, and in this graph state
the following transaction is the only way for [to become positive at any node.

o 74,((0/0/0),0) € {(...,1,/0/0,...)}, leaving triples other than the ih unmcdified (this
convention applies in all definitions of transactions).

33

Transaction Graphs

This transaction evidently exposes its innate priority on an arc.
Once a priority is exposed on an arc, a neighboring node can increase its value of ! with
the following transaction:

o 7ai((vi Vi £i)i o) E (o w0l /1)), where
~ | < v} (the node did not know about this high a priority).

These are the only two transactions that can increase the value of I at a node.
The next transaction propagates a pricrity to a neighbor that may not have seen it yet.

o 70i(03 /03] £3)5) (., 1000,)}
— v; < I (the node has seen a higher priority but not exposed it on this arc).

— v} <l (the neighbor may not know about priority [).

Suppose we apply the transactions stated thus far until none of them applies any more.
Then in state (v;/v}/f;);, we will either have v; = l,v] < l and f; = 0, or v; < l,v] =, and
fi = 1. The latter case does not occur in the node whose innate priority is I, and occurs
in all other nodes exactly once (on the arc along which it first saw !). Imagine orienting all
arcs toward the end where f; = 1 (this can’t be the case at both ends). The oriented arcs
form a spanning tree of the transaction graph, where all paths in the tree lead toward the
node whose innate priority is /.

It is easy for the root of the tree to tell that it is the root—it is the only node where
v; = l and f; = 0 for ali ¢. The hard part is this: how does the root know that the above
transactions have been done until none of them is possible? Let us first make a simplifying
assumption that the transaction graph is a tree. Then it is also easy for every leaf to tell
that it is a leaf. It can announce that propagation can go no further by exposing ! on the
arc where f, = 1. When nodes further up the tree see [on arcs pointing to them, they
can in turn expose [on their arcs where f, = 1, until eventually, the root node sees itself
surrounded by /, at which point is knows it has excluded all other nodes.

Let us drop the assumption that the transaction graph has no cycles. If the above strategy
is pursued, a block arises because a leaf cannot detect that it is a leaf—it may still see values
less than I, specifically, on cycle arcs. But cycle arcs are fortunately easy to detect—when a
node sees its [on an arc where v/ < [, it knows the arc is involved in a cycle, and to break
the cycle, exposes [on it, using the following transaction

o 7((v; /v f)5n 1) € {(. ., 11/1,...)}, where

— v; < | (the node knows about [, but [arrived at this neighbor by some other
routce).

Again, suppose we apply the transactions stated thus far until none of them applies. Then in
state (v;/v)/f;),, we will have v, = I,v] < l and f, = 0 (the arc is an incoming tree arc), or
v; =1,v! =1 and f, = 0 (the arc is a cycle arc, which we also call incoming), or v; < [,v} = {
and f; =1 (the arc is an outgoing tree arc), or v, = l,v] = [, and f; =1 (the arc is a cvcle

34

Transaction Graphs

arc, which we call outgoing). In this state, a leaf of the spanning tree will have f; = 1 on its
outgoing tree arc, and all other arcs (if any) will be incoming cycle arcs on which the leaf
will have seen [. Thus the following rule will cause it to expose [on its outgoing tree arc.

o 7((03/05 f:)5:) & {(.o. o 111,)}, where

— v <l,vi=1and fi =1 (I not previously exposed on the tree arc).
~ For j # ¢,v} = I (all other arcs are cycle arcs or incoming tree arcs, and have been

marked).

This rule causes ! to propagate up the tree, and eventually the state of every node becomes
(I/1] f;);. Tt is in this state that the root node, where | = Iy, has exclusive access. After it has
done its business, it begins setting exposed values on incoming arcs (there must be at least
one) to0, using the following transaction, which also is partly responsible for propagating 0
against the-imagined direction of the arcs:

o 7ai((03/4/ 33, 1) € {(..,0/1/1,...)}, where
— Either I = I3 or v} = 0 for some j.
-y =lvi=1and f; =0.

— For all j # 4,v; = ,v} =l and f; = 0 (this transaction hasn’t yet happened),
v;j = 0,v; = l and f; = 1 (it has happened), or v; = [and f; = 1 (this is an
outgoing arc). '

To trigger this transaction in nodes other than the root, it is necessary and sufficient to see
0 along a forward arc.

o 74:({vj/v5/ £3)3,0) € {(...,1/0/1)}, where
—vy=Lvi=land f; =1

Stabilizing with these transactions results in the imagined direction of arcs going from an
exposed value of 0 to an exposed value of .

The final transaction applies when a node has seen 0 along all incoming arcs; it then
exposes 0 along what were previously considered outgoing arcs, destroying the last record of
the orientation:

e 7a({v;/vi/£3),0) & {{...,0/0/1,...)}, where
-v;=Lvi=0,and f;=1
- For j # ,v} =0

The final step is not a transaction, but an out-of-graph change that resets the state to the
initial one.

o 04((0/0/1);) = {(0/0/0)}

Transaction Graphs

Note-that this step may occur and subsequent phases begin in nodes other than the root
before the root has entirely reset itself, but this causes no harm, because once an arc has
tlc .urm 0/0/1, no transaction occurs-along it until the node is entirely reset.

We close with the promised remarks on priority. The first point is that the priority need
not be innate in the activity description but instead can be part of the state; further, the
priority relationships do not have to be the same from phase to phase. For example, if n is the
number of nodes in the graph, as each node resets itself at the end of a phase, it could change
lg to-ly+1 mod n, so that there is a rotating system of priorities. Other possibilities include
data dependent priorities with l; used ouly as a tie-breaker. Still another possibility is to
use probabilistically computed priorities, accompanied merely by a unique id, and in those
cases where two nodes happened to assign themselves the same priorities, tolerate a certain
probability that no transaction will be performed during a phase. The point here is not so
much what scheme is used, but that the scheduling and even the degree of indeterminacy is
in the hands of the protocols, not of the system. There is no assumption of fair scheduling,
indeed, we can assume a malicious scheduler.

4.6 Procedure-Based Activity Descriptions

Suppose we have procedure f that takes some number of arguments and yields some num-
ber of results. We explicitly allow £ to perform out-of-graph communication, for example,
accessing and updating an external database. In this section, we discuss the activity de-
scription based on £. The idea-is that £ lives inside a-node whose incoming arcs both supply
some:of the arguments and determine, by being enabled, when £ is to be invoked. Dually,
the outgoing arcs say when the application of £ is complete, .i.e., are enabled; and may be
used to propagate results to neighbors.

In a parameterized transaction graph, a reasonable convention would be to reserve-rect-
angles for procedure-based activity descriptions, thus devoting a simple shape to what will
probably be-the most common form of activity description. An example:

\ |

Yy) T

Revise document: u,v « f(&,y,2,3)

u v
The “Revise document” is the iabel that will appear on the correspouding node in a
participant’s view of an activated graph. Note that some of the parameters supplied to £ may
be local, i.e., arc labels; others may be non-local, and refer t6 paramecters of the containing

parameterized transaction graph; the other possibility is a constant. An unlabeled incoming
arc is-one whose only contribution is the fact that it is.enabled; more information than that

36

Transaction Graphs

about the arriving value doesn’t matter. Similarly, the value sent. down an unlabeled output
arc is one which has no information beyond the fact that it is sent.

The reader may have notice:' the directed arcs, in contrast to our usual assumption that
the transaction graph has undirected arcs. This is not a change to the theory, but reflects the
fact that the above node is at a more concrete level than what we have been discussing—it
is what might actually be seen in a graphical display of a parameterized transaction graph.
Moreover, the directions on the arcs do carry meaning, as we now explain. The arcs on a
procedure-based activity description have one of two basic forms of protocols, “send” and
“receive”, and the directions of the arcs indicate which, in the natural way. Let us suppose
that our underlying language has types. The protocols are given by:

o send(t) and receive(t), where (send(¢))? = receive(t).

The protocols specify exactly what is meant by “enabled” (used informally above). One way
to do this is as follows:

e send{t) is true of {{fi,v:)): &

— If f; = 0, then v; (the value being “sent”) is either (false, nil), indicating that the
arc is not enabled, or is (true, w), where w is a value of type ¢, indicating that the
arc is enabled.

— If f; = 1, then v; (the reply) is either false (ready for a value to be sent), or true.

— If ({fi,v:)); is reduced, then f; alternates between 0 and 1 (once a value is exposed,
it is held until a change is seen), and the sequence of (v;); is of the form:

... (true,w) true (false, nil) false (true,w,) true (false,nil) ...

It is not necessary to define how receive(t) acts as a predicate, since that is determined by
send(?).

Earlier, we gave an informal description of how a procedure-based activity description
works. We now state more precisely how one works, not only guaranteeing the behavior
specified by the above protocols, but also showing the details of-how inputs-and outputs are
coordinated. As with mutual exclusion, it is useful to think of one of these nodes as going
through phases, but unlike mutual exclusion, one wants to decouple behavior of nodes, up
to the necessity of coordinating various inputs and outputs.

o During a “transmit” phase, values on incoming arcs change from false to true, ac-
knowledging (and grabbing) an argument value; values on outgoing arcs change from
(false, nil) to (true,...), posting a result value.

¢ During a “compute” phase, values on incoming arcs change from true to false; values
on outgoing arcs, from (true,...) to (false, nil). Both these may be considered “resets”.

Let (n; : receive(t,));-(n] : send(t]))s be the protocol for a procedure-based activity
description. Then the state has:

e A value on each arc to buffer the corresponding argument or result, denoted z, and z;,
respectively.

37

Transaction Graphs

o A boolean on each arc to contro] communication there, denoted b; and b; for the two
sets of arcs.

¢ A single boolean to record compute/transmit state, denoted ¢, for “compute” when
true.

e As a notation, the state s % (c) ~ ({b;, z:)); ~ (b, 2})sr)
Exposed values are controlled by:
o oy(s) def b;

r oo def [(true,wl) if bl
o gi(s) = {(false, nil) otherwise

Values exposed on incoming arcs change to true only during the transmit phase, and only '
when an available value is seen:

o 7i(s, (true,w;)) & {(... (true,w;) ..)}, when?

- cis false.

- b; is false.
Dually, this is also when values exposed on outgoing arcs become (true, z):
o 7i(s, false) & {(... (true,a})...)}, when:
— cis false.
— bl is false.
The end of a transmit phase is made official by the following:
o o(s) & {{true,...)} when: .
— cis false.
— For all 7, b; is true, and for all 7/, b}, is true.

The reader may supply the transactions that reset the arcs during a compute phase. The
end of the compute phase is marked by the change of state due to the application of the
procedure, here called f.

e o(s) ¥ {{false)~ ((bi, @:))i - (b, a¥))e} when:
— cis true.

~ For all ¢,b; is false and for all ¢, b}, is false.

— (27)# denotes the results of applying f to (z;);.

2We follow a convention throughout that only change is indicated, in this case, to the values by, z,.

38

Transaction Graphs

Observe that this does not change values on outgoing arcs, in spite of the fact that it changes
%, because b} is false.

We can summarize the results of the above discussion by giving our first example of a
parameterized activity description.

¢ procedure-based-activity-description
string list(name x type) procedure list(name x type) — activity-description

— The string supplies the label for the participant’s view.

— Let ((ni,t:)): and {(ni,1})); be the two list(name X type) arguments. Then the
procedure argument takes arguments of types (t});.

— The signature for the result is (n; : receive(?;));~ (n! : send (¢})).
g t 1

— The state and the functions o, 7, and o are described above.

The reader may worry that in procedure-based-activity-description, the procedure
argument f must exactly match the signature, while in the discussion of the graphical rep-
resentation, there is a looser connection between f and the incident arcs. This discrepancy
is handled by a translation step which produces f from f. 7

Let us consider a procedure-based activity description with no incoming arcs, initalized
with ¢ = true and b, = false. Then the only change of state will come from having applied f
and thereby computed (z!,),:, which are then propagated along outgoing arcs. Once this has
happened and the arcs are all reset, the compute state is re-entered, and f is re-invoked. In
other words, such an activity description will invoke f as often as it can, up to the rate at
which its results are absorbed and it can supply them. This is ideal for generating repeated
events, but not so good when we want an “initialization” node, whose procedure is invoked
just once at the beginning of an activation. One could-construct a procedure which delayed
forever the second time it was invoked, but this seems artificial, and initialization is common.
In the interests of conciseness of graphs, it might be-reasonable to introduce a second kind
of parameterized activity description, a slight variant on the previous.

¢ procedure-based-activity-description-initialize
string procedure list(name x type) — activity-description

— The arguments are the same as before, with the omission of those for incoming
arcs.
— The state, 0,7, and o are also the same as before, except:

¥ ¢ is omitted from the state, and in the values for 7 given previously, the
condition on c is omitted.

* The rule for o that sets ¢ to true is dropped.

In the spirit of using a distinct shape for each primitive parameterized activity description,
the above might seen in parameterized transaction graphs as:

Transaction Graphs

Release system: z « ¢(z,5)
T
Dually, nodes which are expected to see exactly one phase of input might be drawn thus:

,

System released: h(y)

Consider a graph that has initialization and termination nodes, and where all nodes with both
incoming and outgoing arcs have procedure-based activity descriptions. Consider further the
case in which the graph is acyclic and in which it is possible to assign a number to each
node which corresponds to how long the procedure takes, once it arguments are ready. Then
we have a classic pert chart, and can use well-known techniques to do, say critical path
analysis. Such an analysis is not deep of course, but the point is that this is a simple
example of tying a transaction graph to-an analysis tool. Transaction graphs are integrated
into the everyday activities of its users, and thus provide a way of connecting the activities
of its users with analysis, for example, monitoring whether the assumptions of the analysis
become inconsistent with reality.

Suppose that a transaction graph consists entirely of procedure-based activity descrip-
tions, and allow the graph to have cycles. Then the execution of a graph corresponds to a
“firing sequence” in a marked graph, a subclass of Petri nets, studied extensively in [HC69).
There are a variety of analysis techniques, including liveness (deadlock-free-ness), maximum
cyclic rates, and peak resource usage. As with the connection to pert charts, transaction
graphs provide a connection between useful analysis techniques and the actual progress of a
real activity.

In both the above examples, it should be remembered that it is not necessary that the
detailed transaction graph used to coordinate everyday activities be precisely of the form
required by the analysis technique. It is more likely that there is a projection that takes the
detailed transaction graph to a graph that lies within the class, so that the analysis applics
to a particular view of the activity, as one would expect.

40

Transaction Graphs

A The Universal Activity Description for a Protocol

We show that for any protocol p, there exist S,, op, 75, and o,, which together with the
signature (n : p) comprise an activity description dp» with the following property:

¢ For any activity description d with signature (n : p), there is a projection from d to dp,,.

Because of the generality of this result, in particular, the fact that p can be an arbitrary
predicate, the proof we give is non-constructive—it does not say how to implement d, . In
practice, this is usually not difficult, but even if it is, the result says to keep trying, because
the solution exists.

The almost right idea for an element of S, is a sequence of pairs (f1,v1),...,{(fr,vx) for
which p holds and which ends with fi = 0. In this “state”:

o a,(({fi,v:))E;) would be defined to be vy.
o 7({({fi,v:))fe;) would l;e defined to be the set of all sequences ({f;,v:))5., where:

— pholds for (f,v1), ..., (f{,v]) and f] = 0 (otherwise this would not be a legitimate
state).

— The new sequence is an extension of the original, i.e., ! > k and f] = f; and
vi =v; for i=1,...,k Thus, we may drop the primes from f] and v}.

— The new sequence does not skip any transactions at the node in question, i.e.,
fi=lfori=k+1,...,0 = 1. (If | = k + 1, this is a vacuous condition.)

—~ The new sequence is compatible with the value seen by 7, i.e., : v = v;, where
i, =max{t < !| fi =1}. (If f; =0 for all 4, this is vacuous.)

The motivation behind this definition was stated earlier: 7, responds to a sequence of trans-
actions in a legal way, and it will respond to any legal sequence, i.e., is unpredictable up
to the constraints imposed by p. The only reason that it is not quite right is that a state
“remembers” too much: a sequence of states in an execution that we wish to project may
repeat, but states in the above definition of 7 always grow longer and thus never repeat.
Hence we cannot obtain a projection.

This flaw can be remedied by using as states, i.e., elements of S,, not sequences of the
above form, but rather, quotient sets of sequences of the above form, under the following
equivalence relation:

o For j =1 and 2, let t; & ((fi,,vi;)).,. We will assume that p holds for ¢; and that
fr,i = Q. We define ; ~ £, g
— Vg1 = Uk,2 (both “states” expose the same value).
— Tor any o, p(t1~to) 2 p(t2~to) (where ~ means concatenation).

Intuitively, p can’t tell the difference between ¢, and ¢,.

